

Exercises Week 12: Optimization on nonsmooth sets through lifts

Instructor: Nicolas Boumal
 TA: Andreea Musat (andreea.musat@epfl.ch)

May 8, 2025

1 Minimization on an interval

Let $f : \mathbb{R} \rightarrow \mathbb{R}$ be twice continuously differentiable. Consider the *constrained* minimization problem

$$\min_{x \in \mathbb{R}} f(x) \quad \text{subject to} \quad -1 \leq x \leq 1. \quad (\text{P})$$

Alternatively, consider the *unconstrained* minimization problem

$$\min_{y \in \mathbb{R}} g(y) \quad \text{where} \quad g = f \circ \sin. \quad (\text{Q})$$

1. Argue that (P) has at least one global minimizer.
2. Argue that the optimal values of (P) and (Q) are equal.

A second-order critical (SOC) point for the unconstrained minimization problem (Q) is a point $y \in \mathbb{R}$ such that $g'(y) = 0$ and $g''(y) \geq 0$.

3. Argue carefully that if y is second-order critical for (Q) then $x = \sin(y)$ is stationary for (P).
4. Now assume f is convex. Deduce that if y is a local minimizer of g then in fact y is a global minimizer of g .

2 Sphere-to-simplex lift

Let $\mathbb{S}^{d-1} = \{y \in \mathbb{R}^d \mid \|y\| = 1\}$ be the unit sphere in \mathbb{R}^d and define the simplex

$$\Delta^{d-1} = \{y \in \mathbb{R}^d \mid y_i \geq 0 \text{ for all } i \text{ and } \sum_{i=1}^d y_i = 1\}.$$

The standard simplex plays a crucial role in various optimization problems encountered in fields such as data science, machine learning, statistics, and beyond.

Consider the sphere-to-simplex (or Hadamard) lift, given by

$$\varphi: \mathbb{S}^{d-1} \rightarrow \Delta^{d-1}, \quad \varphi(y) = y^{\odot 2} = (y_1^2, \dots, y_d^2) \quad (\text{sphere-to-simplex})$$

We say that the lift φ satisfies the $2 \Rightarrow 1$ property if for any smooth function $f: \mathcal{E} \rightarrow \mathbb{R}$ and $g = f \circ \varphi$, if $y \in \mathbb{S}^{d-1}$ is a second order critical point for the problem $\min_{y' \in \mathbb{S}^{d-1}} g(y')$, then $x = \varphi(y)$ is a stationary point for the problem $\min_{x' \in \Delta^{d-1}} f(x')$.

Show that the lift φ satisfies the $2 \Rightarrow 1$ property. You may find it easier to first treat the case $d = 2$.

Hint: The tangent cone of the standard simplex has the following expression:

$$T_x \Delta^{d-1} = \{v \in \mathbb{R}^d \mid \sum_{i=1}^d v_i = 0 \text{ and } v_i \geq 0 \text{ for } i \notin \text{supp}(x)\},$$

where for a point $x \in \Delta^{d-1}$, the support is $\text{supp}(x) = \{i \mid x_i > 0\}$.

(This can be shown by using that for a convex set S , it holds that $T_x S = \overline{K_x S}$, where the cone of feasible directions $K_x S$ is defined as $K_x S = \{\alpha(y - x) \mid y \in S, \alpha \geq 0\}$. See Section 9.1 in [these lecture notes](#) for details.)